Auditory Perception
An Analysis and Synthesis

This revised and updated Third Edition describes the nature of sound, how sound is analyzed by the auditory system, and the rules and principles governing our interpretation of auditory input. It covers many topics including sound and the auditory system, locating sound sources, the basis for loudness judgments, perception of acoustic sequences, perceptual restoration of obliterated sounds, speech production and perception, and the relation of hearing to perception in general. Whilst keeping the consistent style of the previous editions, many new features have been added, including suggestions for further reading at the end of each chapter, a section on functional imaging of the brain, expanded information on pitch and infrapitch, and additional coverage of speech processing. Advanced undergraduate and graduate students interested in auditory perception, behavioral sciences, psychology, neurobiology, architectural acoustics, and the hearing sciences will find this book an excellent guide.

Richard M. Warren is Research Professor and Distinguished Professor Emeritus in the Department of Psychology at the University of Wisconsin-Milwaukee. He is a Fellow of the Acoustical Society of America, American Psychological Association, and the Association for Psychological Science.
Auditory Perception
An Analysis and Synthesis

Third Edition

RICHARD M. WARREN
CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521868709

© R.M. Warren 2008
Second edition © Cambridge University Press 1999

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2008

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication data
Warren, Richard M.
p. ; cm.
Includes bibliographical references and index.
QP461.W27 2008
152.1/5·dc22 2007050033

ISBN 978-0-521-68889-5 paperback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to
in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.
To Roslyn
Contents

Preface page xii

1 Sound and the auditory system 1

The nature of auditory stimuli 1
Our auditory apparatus 5
 The outer ear and the middle ear 5
 Structure of the inner ear 9
 Neural structures and auditory pathways 13
Mechanics for stimulation within the inner ear 16
The auditory-acoustic paradox: excellent discrimination from a poor instrument 22
Electrophysiological response of the cochlea and peripheral neural apparatus 23
 The resting potential 23
 The summatting potential 23
 The cochlear microphonic 24
 Whole-nerve action potential 25
 Single-unit receptor potentials 25
 Single-unit generator potentials 26
 Action potentials of auditory nerve fibers 27
Investigation of human cortical function 31
 fMRI 31
 PET 32
 EEG and MEG 33
Suggestions for further reading 34

2 Spatial localization and binaural hearing 35

Binaural perception of azimuth 36
Minimal audible angle 40
Binaural beats 41
Detection of interaural delays for clicks and for complex sounds 42
Contralateral induction 45
Masking level differences 48
Two types of temporal disparity 50
Time-intensity trading 51
Some cautions concerning interpretation of studies using headphones 52
Importance of the pinnae in sound localization 52
Room acoustics 56
Auditory reorientation 57
Estimates of distance from the source 59
Sensory input and physical correlates 63
Suggestions for further reading 63

3 Perception of acoustic repetition: pitch and infrapitch 64
Terminology 64
Classical pitch studies 65
Masking 69
Critical bands 72
Comodulation and masking reduction 72
Place theory of pitch 74
Periodicity theory of pitch 75
Schouten's residue pitch 76
Pitch of inharmonic complexes 77
Spectral dominance 79
Complex tones and local temporal patterns on the basilar membrane 79
Use of special versus model periodic stimuli 82
Iterated noise segments as representative or model periodic sounds 83
Pitch and infrapitch iterate 85
Echo pitch and infrapitch echo 91
Periodic signals with alternating polarity 95
Pitches produced by dichotic interactions 101
Ear dominance for perception of pitch 102
Musical pitch and musical infrapitch (rhythm) 102
Deviations from strict periodicity in the pitch range 103
Some models for the pitch of complex tones 104
Suggestions for further reading 105
4 Judging auditory magnitudes: the sone scale of loudness and the mel scale of pitch 107

Sensory input and perception 107
The history of loudness measurement 108
Loudness judgments and their relation to auditory localization: the physical correlate theory 111
 1. Equivalence of half-loudness and twice distance estimates 113
 2. Loudness and the inverse square law 113
 3. Effects of reverberation on loudness functions 117
 4. Loudness of self-generated sound 119
 5. A new physical correlate can result in a new loudness scale 121
The mel scale of pitch magnitude 122
Some conclusions and inferences 124
Suggestions for further reading 125

5 Perception of acoustic sequences 126
Rate at which component sounds occur in speech and music 126
Identification of components and their order 127
Identification of the order of components for extended sequences of unrelated sounds and for steady-state phonemes 129
Identification of order within tonal sequences 130
Limits of stream segregation as an explanatory principle 131
Identification of order and verbal labeling 131
Need for verbal labeling for serial order retention in memory experiments 133
Identification of patterns without discrimination of order: global pattern recognition 134
Extent of temporal mismatch permitting global pattern recognition 136
Should practiced or unpracticed subjects be used in sequence experiments? 138
A comparison of global pattern recognition with identification of the order of components 138
Perception of tonal sequences and melodies 142
Acoustic sequences as unresolved “temporal compounds” 146
Linguistic temporal compounds formed by repeating sequences of brief steady-state vowels 146
Identification of components and their orders and global pattern recognition for dichotomous patterns 147
Global pattern recognition in animals other than humans 147
Conclusions 149
Suggestions for further reading 149
6 Perceptual restoration of missing sounds 150

Temporal induction 151
 Homophonic continuity 151
 Heterophonic continuity 152
 The roll effect as tonal restoration 156
 Durational limits for illusory continuity 156
 Reciprocal changes in inducer and inducee 156
 Alternating levels of the same sound: some anomalous effects observed for the higher level sound in the homophonic induction of tones 159
 Differences in the homophonic induction of tone and noise 160
 Binaural release from temporal induction 161

Temporal induction of dynamic signals 161
 Temporal induction of tonal frequency glides 161
 Temporal induction of speech: phonemic restoration 162
 Apparent continuity of speech produced by insertion of noise into multiple gaps 164
 Increase in intelligibility produced by insertion of noise into multiple temporal gaps 166
 Temporal induction in cats and monkeys 169

Spectral restoration 170
Masking and unmasking 172
Suggestions for further reading 172

7 Speech 174

Speech production 174
 The subglottal system 175
 The larynx 176
 The vocal tract and articulation of speech sounds 178

Visual representation of speech sounds 183
Intelligibility of sentences heard through narrow spectral slits 186
Intelligibilities of passbands heard singly and together 189
The protean phoneme 190

Are phonemes perceptual units? 194
 The alphabet and the phoneme 194
 Illiterate adults cannot segment phonetically 195
 Ability to segment phonetically and reading ability are related in children 196
 Cues for identifying phonemes and characterizing letters 197
 Phonemes in speech are not perceived, but are inferred 198
 “Restored” and “real” phonemes are perceptually equivalent 198
 Identification of syllables and words precedes identification of constituent phonemes 198
Obligatory transformation of brief steady-state phonemes into syllables and words: the vowel-sequence illusion 199

Implications of the vowel-sequence illusion for theories of aphasia 202

Perceptual changes occurring during repetition of syllables and words 203

Verbal and visual satiation 203

Verbal transformations 205

Identifying lexical neighbors using verbal transformations 208

Dichotic verbal transformations 209

The relation between production and perception of speech: organization above the lexical level 211

Skilled storage and delayed perceptual organization of speech 211

Speech errors in everyday life 213

Syllable recognition by nonhuman species 214

Suggestions for further reading 215

8 The relation of hearing to perception in general 216

Multimodal perception 216

Interaction of vision with senses other than hearing 216

Interaction of vision and hearing in speech perception 217

Perceptual resolution of conflicting visual and auditory information concerning speech 218

Multimodal sensory control of speech production 219

General perceptual rules and modality-specific rules 220

1. Sensory input is interpreted in terms of familiar causative agents or events, and not in terms of the manner and nature of neural stimulation 220

2. Perceptual changes occur during exposure to an unchanging stimulus pattern 221

3. Prior stimulation influences perceptual criteria 222

Suggestions for further reading 224

References 225

Index 256
Preface

As in the earlier editions, the present text emphasizes the interconnectedness of areas in auditory perception. These linkages are especially evident in the chapters dealing with acoustic sequences, pitch and infrapitch, loudness, and the restoration of portions of signals obliterated by extraneous sounds. In addition, the chapter on speech describes how processes employed for the perception of brief nonverbal sounds are used for the organization of syllables and words, along with an overlay of special linguistic mechanisms.

The basic format of the book remains unchanged, but all chapters have been updated. Among the additions are new sections in Chapter 1 describing the principles underlying functional imaging of the brain based on the hemodynamic techniques of fMRI and PET, and the electrodynamic techniques of EEG and MEG. New information concerning pitch and infrapitch appears in Chapter 3, and additional information concerning speech processing is incorporated into Chapter 7. Suggested additional reading now appears at the end of each chapter.

It is hoped that this text will be of value to research scientists and to professionals dealing with sound and hearing. No detailed specialized knowledge is assumed, since basic information necessary for understanding the material covered is provided. It may be used for advanced undergraduate and graduate courses in behavioral sciences, neurobiology, music, audio engineering, and the health sciences and professions.

My own research in perception was carried out at the following institutions: Brown University; New York University College of Medicine; Cambridge University; the Medical Research Council Applied Psychology Research Unit, Cambridge; Oxford University; the Laboratory of Psychology at the National Institute of Mental Health, Bethesda; and the University of Wisconsin-Milwaukee.
I acknowledge the debts to my graduate students over the years.

Dr. Peter W. Lenz has made essential contributions to all aspects of the research currently being carried out in our laboratory.

My debt to Jim Bashford is especially great: he has been my colleague and collaborator since the 1970s. Our back-and-forth discussions have played a basic role in designing and conducting the work in our laboratory.

I wish to thank Ms. Michelle L. Ullman for her valuable and thorough bibliographic work and in the preparation of the typescript.

I am grateful for the past research support by the National Research Council of the National Academy of Sciences, the National Science Foundation, the Air Force Office of Scientific Research, and the National Institutes of Health. My current support is from the National Institute on Deafness and Other Communication Disorders.

Finally, I acknowledge the essential role of Dr. Roslyn Pauker Warren, my colleague and wife. Without her, none of the editions of this book would have been started, and once started could not have been finished.

Please refer to www.cambridge.org/9780521868709 for audio demonstrations of some of the phenomena described in the text, that provide new insight into the mechanisms employed in auditory perception. The stimuli and descriptive narrative were produced by Dr. James A. Bashford, Jr.