Mechanical Behavior of Materials

A balanced mechanics-materials approach and coverage of the latest developments in biomaterials and electronic materials, the new edition of this popular text is the most thorough and modern book available for upper-level undergraduate courses on the mechanical behavior of materials. Kept mathematically simple and with no extensive background in materials assumed, this is an accessible introduction to the subject.

New to this edition:
Every chapter has been revised, reorganised and updated to incorporate modern materials whilst maintaining a logical flow of theory to follow in class.

Mechanical principles of biomaterials, including cellular materials, and electronic materials are emphasized throughout.

A new chapter on environmental effects is included, describing the key relationship between conditions, microstructure and behavior.

New homework problems included at the end of every chapter.

Providing a conceptual understanding by emphasizing the fundamental mechanisms that operate at micro- and nano-meter level across a wide-range of materials, reinforced through the extensive use of micrographs and illustrations, this is the perfect textbook for a course in mechanical behavior of materials, in mechanical engineering, and materials science.

Marc Meyers is a Professor in the Department of NanoEngineering and Mechanical and Aerospace Engineering at the University of California, San Diego. A Co-Founder and Co-Chair of the EXPLOMET Conferences, he has authored numerous texts and won international awards, including the Humboldt Senior Scientist Award (Germany), the TMS Distinguished Scientist/Engineer Awards (USA), and the Lee Hsun Award (China).

Krishan Chawla is a Professor in the Department of Materials Science and Engineering, University of Alabama at Birmingham. He is a Fellow of ASM International, Editor of International Materials Reviews, and has worked at various institutions in the Americas and Europe. He has authored several others texts and won numerous awards for his research and teaching.
Mechanical Behavior of Materials

Marc André Meyers
University of California, San Diego

Krishan Kumar Chawla
University of Alabama at Birmingham
Lovingly dedicated to the memory of my parents, Henri and Marie-Anne.

Marc André Meyers

Lovingly dedicated to the memory of my parents, Manohar L. and Sumitra Chawla.

Krishan Kumar Chawla
We dance round in a ring and suppose.
But the secret sits in the middle and knows.

Robert Frost
Contents

Preface to the First Edition
page xvii
Preface to the Second Edition
xxi
A Note to the Reader
xxiii

Chapter 1 Materials: Structure, Properties, and Performance

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Monolithic, Composite, and Hierarchical Materials</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Structure of Materials</td>
<td>15</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Crystal Structures</td>
<td>16</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Metals</td>
<td>19</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Ceramics</td>
<td>25</td>
</tr>
<tr>
<td>1.3.4</td>
<td>Glasses</td>
<td>30</td>
</tr>
<tr>
<td>1.3.5</td>
<td>Polymers</td>
<td>31</td>
</tr>
<tr>
<td>1.3.6</td>
<td>Liquid Crystals</td>
<td>39</td>
</tr>
<tr>
<td>1.3.7</td>
<td>Biological Materials and Biomaterials</td>
<td>40</td>
</tr>
<tr>
<td>1.3.8</td>
<td>Porous and Cellular Materials</td>
<td>44</td>
</tr>
<tr>
<td>1.3.9</td>
<td>Nano- and Microstructure of Biological Materials</td>
<td>45</td>
</tr>
<tr>
<td>1.3.10</td>
<td>The Sponge Spicule: An Example of a Biological Material</td>
<td>56</td>
</tr>
<tr>
<td>1.3.11</td>
<td>Active (or Smart) Materials</td>
<td>57</td>
</tr>
<tr>
<td>1.3.12</td>
<td>Electronic Materials</td>
<td>58</td>
</tr>
<tr>
<td>1.3.13</td>
<td>Nanotechnology</td>
<td>60</td>
</tr>
<tr>
<td>1.4</td>
<td>Strength of Real Materials</td>
<td>61</td>
</tr>
</tbody>
</table>

Suggested Reading
Exercises

Chapter 2 Elasticity and Viscoelasticity

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>71</td>
</tr>
<tr>
<td>2.2</td>
<td>Longitudinal Stress and Strain</td>
<td>72</td>
</tr>
<tr>
<td>2.3</td>
<td>Strain Energy (or Deformation Energy) Density</td>
<td>77</td>
</tr>
<tr>
<td>2.4</td>
<td>Shear Stress and Strain</td>
<td>80</td>
</tr>
<tr>
<td>2.5</td>
<td>Poisson's Ratio</td>
<td>83</td>
</tr>
<tr>
<td>2.6</td>
<td>More Complex States of Stress</td>
<td>85</td>
</tr>
<tr>
<td>2.7</td>
<td>Graphical Solution of a Biaxial State of Stress: the Mohr Circle</td>
<td>89</td>
</tr>
<tr>
<td>2.8</td>
<td>Pure Shear: Relationship between G and E</td>
<td>95</td>
</tr>
<tr>
<td>2.9</td>
<td>Anisotropic Effects</td>
<td>96</td>
</tr>
<tr>
<td>2.10</td>
<td>Elastic Properties of Polycrystals</td>
<td>107</td>
</tr>
<tr>
<td>2.11</td>
<td>Elastic Properties of Materials</td>
<td>110</td>
</tr>
<tr>
<td>2.11.1</td>
<td>Elastic Properties of Metals</td>
<td>111</td>
</tr>
<tr>
<td>2.11.2</td>
<td>Elastic Properties of Ceramics</td>
<td>111</td>
</tr>
<tr>
<td>2.11.3</td>
<td>Elastic Properties of Polymers</td>
<td>116</td>
</tr>
<tr>
<td>2.11.4</td>
<td>Elastic Constants of Unidirectional Fiber Reinforced Composite</td>
<td>117</td>
</tr>
</tbody>
</table>
CONTENTS

Chapter 2
Viscoelasticity
2.12
2.12.1 Storage and Loss Moduli
2.13
Rubber Elasticity
2.14
Mooney–Rivlin Equation
2.15
Elastic Properties of Biological Materials
2.15.1 Blood Vessels
2.15.2 Articular Cartilage
2.15.3 Mechanical Properties at the Nanometer Level
2.16
Elastic Properties of Electronic Materials
2.17
Elastic Constants and Bonding

Suggested Reading
Exercises

Chapter 3
Plasticity
3.1
Introduction
3.2
Plastic Deformation in Tension
3.2.1 Tensile Curve Parameters
3.2.2 Necking
3.2.3 Strain Rate Effects
3.3
Plastic Deformation in Compression Testing
3.4
The Bauschunger Effect
3.5
Plastic Deformation of Polymers
3.5.1 Stress–Strain Curves
3.5.2 Glassy Polymers
3.5.3 Semicrystalline Polymers
3.5.4 Viscous Flow
3.5.5 Adiabatic Heating
3.6
Plastic Deformation of Glasses
3.6.1 Microscopic Deformation Mechanism
3.6.2 Temperature Dependence and Viscosity
3.7
Flow, Yield, and Failure Criteria
3.7.1 Maximum-Stress Criterion (Rankine)
3.7.2 Maximum-Shear-Stress Criterion (Tresca)
3.7.3 Maximum-Distortion-Energy Criterion (von Mises)
3.7.4 Graphical Representation and Experimental Verification of Rankine, Tresca, and von Mises Criteria
3.7.5 Failure Criteria for Brittle Materials
3.7.6 Yield Criteria for Ductile Polymers
3.7.7 Failure Criteria for Composite Materials
3.7.8 Yield and Failure Criteria for Other Anisotropic Materials
3.8
Hardness
3.8.1 Macroindentation Tests
3.8.2 Microindentation Tests
3.8.3 Nanoindentation
3.9
Formability: Important Parameters
3.9.1 Plastic Anisotropy
3.9.2 Punch–Stretch Tests and Forming-Limit Curves (or Keeler–Goodwin Diagrams) 232
3.10 Muscle Force 237
3.11 Mechanical Properties of Some Biological Materials 241
Suggested Reading 245
Exercises 246

Chapter 4 Imperfections: Point and Line Defects 251
4.1 Introduction 251
4.2 Theoretical Shear Strength 252
4.3 Atomic or Electronic Point Defects 254
 4.3.1 Equilibrium Concentration of Point Defects 256
 4.3.2 Production of Point Defects 259
 4.3.3 Effect of Point Defects on Mechanical Properties 260
 4.3.4 Radiation Damage 261
 4.3.5 Ion Implantation 265
4.4 Line Defects 266
 4.4.1 Experimental Observation of Dislocations 270
 4.4.2 Behavior of Dislocations 273
 4.4.3 Stress Field Around Dislocations 275
 4.4.4 Energy of Dislocations 278
 4.4.5 Force Required to Bow a Dislocation 282
 4.4.6 Dislocations in Various Structures 284
 4.4.7 Dislocations in Ceramics 293
 4.4.8 Sources of Dislocations 298
 4.4.9 Dislocation Pileups 302
 4.4.10 Intersection of Dislocations 304
 4.4.11 Deformation Produced by Motion of Dislocations (Orowan’s Equation) 306
 4.4.12 The Peierls–Nabarro Stress 309
 4.4.13 The Movement of Dislocations: Temperature and Strain Rate Effects 310
 4.4.14 Dislocations in Electronic Materials 313
Suggested Reading 316
Exercises 317

Chapter 5 Imperfections: Interfacial and Volumetric Defects 321
5.1 Introduction 321
5.2 Grain Boundaries 321
 5.2.1 Tilt and Twist Boundaries 326
 5.2.2 Energy of a Grain Boundary 328
 5.2.3 Variation of Grain-Boundary Energy with Misorientation 330
 5.2.4 Coincidence Site Lattice (CSL) Boundaries 332
 5.2.5 Grain-Boundary Triple Junctions 334
5.2 Grain-Boundary Dislocations and Ledges 334
5.2.6 Grain-Boundary Dislocations and Ledges 334
5.2.7 Grain Boundaries as a Packing of Polyhedral Units 336
5.3 Twinning and Twin Boundaries 336
5.3.1 Crystallography and Morphology 337
5.3.2 Mechanical Effects 341
5.4 Grain Boundaries in Plastic Deformation (Grain-size Strengthening) 345
5.4.1 Hall--Petch Theory 348
5.4.2 Cottrell's Theory 349
5.4.3 Li's Theory 350
5.4.4 Meyers--Ashworth Theory 351
5.5 Other Internal Obstacles 353
5.6 Nanocrystalline Materials 355
5.7 Volumetric or Tridimensional Defects 358
5.8 Imperfections in Polymers 361
Suggested Reading 364
Exercises 364

Chapter 6 | Geometry of Deformation and Work-Hardening 369
6.1 Introduction 369
6.2 Geometry of Deformation 373
6.2.1 Stereographic Projections 373
6.2.2 Stress Required for Slip 374
6.2.3 Shear Deformation 380
6.2.4 Slip in Systems and Work-Hardening 381
6.2.5 Independent Slip Systems in Polycrystals 384
6.3 Work-Hardening in Polycrystals 384
6.3.1 Taylor's Theory 386
6.3.2 Seeger's Theory 388
6.3.3 Kuhlmann-Wilsdorf's Theory 388
6.4 Softening Mechanisms 392
6.5 Texture Strengthening 395
Suggested Reading 399
Exercises 399

Chapter 7 | Fracture: Macroscopic Aspects 404
7.1 Introduction 404
7.2 Theoretical Tensile Strength 406
7.3 Stress Concentration and Griffith Criterion of Fracture 409
7.3.1 Stress Concentrations 409
7.3.2 Stress Concentration Factor 409
7.4 Griffith Criterion 416
7.5 Crack Propagation with Plasticity 419
7.6 Linear Elastic Fracture Mechanics 421
7.6.1 Fracture Toughness 422
Chapter 8 | Fracture: Microscopic Aspects

8.1 Introduction
8.2 Fracture in Metals
 8.2.1 Crack Nucleation
 8.2.2 Ductile Fracture
 8.2.3 Brittle, or Cleavage, Fracture
8.3 Fracture in Ceramics
 8.3.1 Microstructural Aspects
 8.3.2 Effect of Grain Size on Strength of Ceramics
 8.3.3 Fracture of Ceramics in Tension
 8.3.4 Fracture in Ceramics Under Compression
 8.3.5 Thermally Induced Fracture in Ceramics
8.4 Fracture in Polymers
 8.4.1 Brittle Fracture
 8.4.2 Crazing and Shear Yielding
 8.4.3 Fracture in Semicrystalline and Crystalline Polymers
 8.4.4 Toughness of Polymers
8.5 Fracture and Toughness of Biological Materials
8.6 Fracture Mechanism Maps
Suggested Reading
Exercises

Chapter 9 | Fracture Testing

9.1 Introduction
9.2 Impact Testing
 9.2.1 Charpy Impact Test
Contents

9.2.2 Drop-Weight Test 529
9.2.3 Instrumented Charpy Impact Test 531
9.3 Plane-Strain Fracture Toughness Test 532
9.4 Crack Opening Displacement Testing 537
9.5 J-Integral Testing 538
9.6 Flexure Test 540
9.6.1 Three-Point Bend Test 541
9.6.2 Four-Point Bending 542
9.6.3 Interlaminar Shear Strength Test 543
9.7 Fracture Toughness Testing of Brittle Materials 545
9.7.1 Chevron Notch Test 547
9.7.2 Indentation Methods for Determining Toughness 549
9.8 Adhesion of Thin Films to Substrates 552
Suggested Reading 553
Exercises 553

Chapter 10
Solid Solution, Precipitation, and Dispersion Strengthening 558
10.1 Introduction 558
10.2 Solid-Solution Strengthening 559
10.2.1 Elastic Interaction 560
10.2.2 Other Interactions 564
10.3 Mechanical Effects Associated with Solid Solutions 564
10.3.1 Well-Defined Yield Point in the Stress–Strain Curves 565
10.3.2 Plateau in the Stress–Strain Curve and Lüders Band 566
10.3.3 Strain Aging 567
10.3.4 Serrated Stress–Strain Curve 568
10.3.5 Snoek Effect 569
10.3.6 Blue Brittleness 570
10.4 Precipitation- and Dispersion-Hardening 571
10.5 Dislocation–Precipitate Interaction 579
10.6 Precipitation in Microalloyed Steels 585
10.7 Dual-Phase Steels 590
Suggested Reading 590
Exercises 591

Chapter 11
Martensitic Transformation 594
11.1 Introduction 594
11.2 Structures and Morphologies of Martensite 594
11.3 Strength of Martensite 600
11.4 Mechanical Effects 603
11.5 Shape-Memory Effect 608
11.5.1 Shape-Memory Effect in Polymers 614
11.6 Martensitic Transformation in Ceramics 614
Suggested Reading 618
Exercises 619
<table>
<thead>
<tr>
<th>Chapter 12</th>
<th>Special Materials: Intermetallics and Foams</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>12.2</td>
<td>Silicides</td>
</tr>
<tr>
<td>12.3</td>
<td>Ordered Intermetallics</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Dislocation Structures in Ordered Intermetallics</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Effect of Ordering on Mechanical Properties</td>
</tr>
<tr>
<td>12.3.3</td>
<td>Ductility of Intermetallics</td>
</tr>
<tr>
<td>12.4</td>
<td>Cellular Materials</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Structure</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Modeling of the Mechanical Response</td>
</tr>
<tr>
<td>12.4.3</td>
<td>Comparison of Predictions and Experiment Results</td>
</tr>
<tr>
<td>12.4.4</td>
<td>Syntactic Foam</td>
</tr>
<tr>
<td>12.4.5</td>
<td>Plastic Behavior of Porous Materials</td>
</tr>
<tr>
<td></td>
<td>Suggested Reading</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 13</th>
<th>Creep and Superplasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>13.2</td>
<td>Correlation and Extrapolation Methods</td>
</tr>
<tr>
<td>13.3</td>
<td>Fundamental Mechanisms Responsible for Creep</td>
</tr>
<tr>
<td>13.4</td>
<td>Diffusion Creep</td>
</tr>
<tr>
<td>13.5</td>
<td>Dislocation (or Power Law) Creep</td>
</tr>
<tr>
<td>13.6</td>
<td>Dislocation Glide</td>
</tr>
<tr>
<td>13.7</td>
<td>Grain-Boundary Sliding</td>
</tr>
<tr>
<td>13.8</td>
<td>Deformation-Mechanism (Weertman--Ashby) Maps</td>
</tr>
<tr>
<td>13.9</td>
<td>Creep-Induced Fracture</td>
</tr>
<tr>
<td>13.10</td>
<td>Heat-Resistant Materials</td>
</tr>
<tr>
<td>13.11</td>
<td>Creep in Polymers</td>
</tr>
<tr>
<td>13.12</td>
<td>Diffusion-Related Phenomena in Electronic Materials</td>
</tr>
<tr>
<td>13.13</td>
<td>Superplasticity</td>
</tr>
<tr>
<td></td>
<td>Suggested Reading</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 14</th>
<th>Fatigue</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>14.2</td>
<td>Fatigue Parameters and S–N (Wöhler) Curves</td>
</tr>
<tr>
<td>14.3</td>
<td>Fatigue Strength or Fatigue Life</td>
</tr>
<tr>
<td>14.4</td>
<td>Effect of Mean Stress on Fatigue Life</td>
</tr>
<tr>
<td>14.5</td>
<td>Effect of Frequency</td>
</tr>
<tr>
<td>14.6</td>
<td>Cumulative Damage and Life Exhaustion</td>
</tr>
<tr>
<td>14.7</td>
<td>Mechanisms of Fatigue</td>
</tr>
</tbody>
</table>
14. Fatigue

- **14.7.1 Fatigue Crack Nucleation**
- **14.7.2 Fatigue Crack Propagation**
- **14.8 Linear Elastic Fracture Mechanics Applied to Fatigue**
 - **14.8.1 Fatigue of Biomaterials**
- **14.9 Hysteretic Heating in Fatigue**
- **14.10 Environmental Effects in Fatigue**
- **14.11 Fatigue Crack Closure**
- **14.12 The Two-Parameter Approach**
- **14.13 The Short-Crack Problem in Fatigue**
- **14.14 Fatigue Testing**
 - **14.14.1 Conventional Fatigue Tests**
 - **14.14.2 Rotating Bending Machine**
 - **14.14.3 Statistical Analysis of S–N Curves**
 - **14.14.4 Nonconventional Fatigue Testing**
 - **14.14.5 Servohydraulic Machines**
 - **14.14.6 Low-Cycle Fatigue Tests**
 - **14.14.7 Fatigue Crack Propagation Testing**
- **Suggested Reading**
- **Exercises**

15. Composite Materials

- **15.1 Introduction**
- **15.2 Types of Composites**
- **15.3 Important Reinforcements and Matrix Materials**
 - **15.3.1 Microstructural Aspects and Importance of the Matrix**
- **15.4 Interfaces in Composites**
 - **15.4.1 Crystallographic Nature of the Fiber–Matrix Interface**
 - **15.4.2 Interfacial Bonding in Composites**
 - **15.4.3 Interfacial Interactions**
- **15.5 Properties of Composites**
 - **15.5.1 Density and Heat Capacity**
 - **15.5.2 Elastic Moduli**
 - **15.5.3 Strength**
 - **15.5.4 Anisotropic Nature of Fiber Reinforced Composites**
 - **15.5.5 Aging Response of Matrix in MMCs**
 - **15.5.6 Toughness**
- **15.6 Load Transfer from Matrix to Fiber**
 - **15.6.1 Fiber and Matrix Elastic**
 - **15.6.2 Fiber Elastic and Matrix Plastic**
- **15.7 Fracture in Composites**
 - **15.7.1 Single and Multiple Fracture**
 - **15.7.2 Failure Modes in Composites**
- **15.8 Some Fundamental Characteristics of Composites**
 - **15.8.1 Heterogeneity**
15.8.2 Anisotropy 799
15.8.3 Shear Coupling 801
15.8.4 Statistical Variation in Strength 802
15.9 Functionally Graded Materials 803
15.10 Applications 803
15.10.1 Aerospace Applications 803
15.10.2 Nonaerospace Applications 804
15.11 Laminated Composites 806

Suggested Reading 809
Exercises 810

Chapter 16 Environmental Effects 815

16.1 Introduction 815
16.2 Electrochemical Nature of Corrosion in Metals 815
16.2.1 Galvanic Corrosion 816
16.2.2 Uniform Corrosion 817
16.2.3 Crevice corrosion 817
16.2.4 Pitting Corrosion 818
16.2.5 Intergranular Corrosion 818
16.2.6 Selective leaching 819
16.2.7 Erosion-Corrosion 819
16.2.8 Radiation Damage 819
16.2.9 Stress Corrosion 819
16.3 Oxidation of metals 819
16.4 Environmentally Assisted Fracture in Metals 820
16.4.1 Stress Corrosion Cracking (SCC) 820
16.4.2 Hydrogen Damage in Metals 824
16.4.3 Liquid and Solid Metal Embrittlement 830
16.5 Environmental Effects in Polymers 831
16.5.1 Chemical or Solvent Attack 832
16.5.2 Swelling 832
16.5.3 Oxidation 833
16.5.4 Radiation Damage 834
16.5.5 Environmental Crazing 835
16.5.6 Alleviating the Environmental Damage in Polymers 836
16.6 Environmental Effects in Ceramics 836
16.6.1 Oxidation of Ceramics 839
Suggested Reading 840
Exercises 840

Appendixes 843
Index 851
Preface to the First Edition

Courses in the mechanical behavior of materials are standard in both mechanical engineering and materials science/engineering curricula. These courses are taught, usually, at the junior or senior level. This book provides an introductory treatment of the mechanical behavior of materials with a balanced mechanics-materials approach, which makes it suitable for both mechanical and materials engineering students. The book covers metals, polymers, ceramics, and composites and contains more than sufficient information for a one-semester course. It therefore enables the instructor to choose the path most appropriate to the class level (junior- or senior-level undergraduate) and background (mechanical or materials engineering). The book is organized into 15 chapters, each corresponding, approximately, to one week of lectures. It is often the case that several theories have been developed to explain specific effects; this book presents only the principal ideas. At the undergraduate level the simple aspects should be emphasized, whereas graduate courses should introduce the different viewpoints to the students. Thus, we have often ignored active and important areas of research. Chapter 1 contains introductory information on materials that students with a previous course in the properties of materials should be familiar with. In addition, it enables those students unfamiliar with materials to "get up to speed." The section on the theoretical strength of a crystal should be covered by all students. Chapter 2, on elasticity and viscoelasticity, contains an elementary treatment, tailored to the needs of undergraduate students. Most metals and ceramics are linearly elastic, whereas polymers often exhibit nonlinear elasticity with a strong viscous component. In Chapter 3, a broad treatment of plastic deformation and flow and fracture criteria is presented. Whereas mechanical engineering students should be fairly familiar with these concepts, (Section 3.2 can therefore be skipped), materials engineering students should be exposed to them. Two very common tests applied to materials, the uniaxial tension and compression tests, are also described. Chapters 4 through 9, on imperfections, fracture, and fracture toughness, are essential to the understanding of the mechanical behavior of materials and therefore constitute the core of the course. Point, line (Chapter 4), interfacial, and volumetric (Chapter 5) defects are discussed. The treatment is introductory and primarily descriptive. The mathematical treatment of defects is very complex and is not really essential to the understanding of the mechanical behavior of materials at an engineering level. In Chapter 6, we use the concept of dislocations to explain work-hardening; our understanding of this phenomenon, which dates from the 1930s, followed by contemporary developments, is presented. Chapters 7 and 8 deal with fracture from a macroscopic (primarily mechanical) and a microstructural viewpoint, respectively. In brittle materials, the fracture strength under
tension and compression can differ by a factor of 10, and this difference is discussed. The variation in strength from specimen to specimen is also significant and is analyzed in terms of Weibull statistics. In Chapter 9, the different ways in which the fracture resistance of materials can be tested is described. In Chapter 10, solid solution, precipitation, and dispersion strengthening, three very important mechanisms for strengthening metals, are presented. Martensitic transformation and toughening (Chapter 11) are very effective in metals and ceramics, respectively. Although this effect has been exploited for over 4,000 years, it is only in the second half of the 20th century that a true scientific understanding has been gained; as a result, numerous new applications have appeared, ranging from shape-memory alloys to maraging steels, that exhibit strengths higher than 2 GPa. Among novel materials with unique properties that have been developed for advanced applications are intermetallics, which often contain ordered structures. These are presented in Chapter 12. In Chapters 13 and 14, a detailed treatment of the fundamental mechanisms responsible for creep and fatigue, respectively, is presented. This is supplemented by a description of the principal testing and data analysis methods for these two phenomena. The last chapter of the book deals with composite materials. This important topic is, in some schools, the subject of a separate course. If this is the case, the chapter can be omitted.

This book is a spinoff of a volume titled Mechanical Metallurgy written by these authors and published in 1984 by Prentice-Hall. That book had considerable success in the United States and overseas, and was translated into Chinese. For the current volume, major changes and additions were made, in line with the rapid development of the field of materials in the 1980s and 1990s. Ceramics, polymers, composites, and intermetallics are nowadays important structural materials for advanced applications and are comprehensively covered in this book. Each chapter contains, at the end, a list of suggested reading; readers should consult these sources if they need to expand a specific point or if they want to broaden their knowledge in an area. Full acknowledgment is given in the text to all sources of tables and illustrations. We might have inadvertently forgotten to cite some of the sources in the final text; we sincerely apologize if we have failed to do so. All chapters contain solved examples and extensive lists of homework problems. These should be valuable tools in helping the student to grasp the concepts presented.

By their intelligent questions and valuable criticisms, our students provided the most important input to the book; we are very grateful for their contributions. We would like to thank our colleagues and fellow scientists who have, through painstaking effort and unselfish devotion, proposed the concepts, performed the critical experiments, and developed the theories that form the framework of an emerging quantitative understanding of the mechanical behavior of materials. In order to make the book easier to read, we have opted to minimize the use of references. In a few places, we have placed them
in the text. The patient and competent typing of the manuscript by Jennifer Natelli, drafting by Jessica McKinnis, and editorial help with text and problems by H. C. (Bryan) Chen and Elizabeth Kristofetz are gratefully acknowledged. Krishan Chawla would like to acknowledge research support, over the years, from the US Office of Naval Research, Oak Ridge National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratories. He is also very thankful to his wife, Nivedita; son, Nikhilesh; and daughter, Kanika, for making it all worthwhile! Kanika's help in word processing is gratefully acknowledged. Marc Meyers acknowledges the continued support of the National Science Foundation (especially R. J. Reynik and B. MacDonald), the US Army Research Office (especially G. Mayer, A. Crowson, K. Iyer, and E. Chen), and the Office of Naval Research. The inspiration provided by his grandfather, Jean-Pierre Meyers, and father, Henri Meyers, both metallurgists who devoted their lives to the profession, has inspired Marc Meyers. The Institute for Mechanics and Materials of the University of California at San Diego generously supported the writing of the book during the 1993–96 period. The help provided by Professor R. Skalak, director of the institute, is greatly appreciated. The Institute for Mechanics and Materials is supported by the National Science Foundation. The authors are grateful for the hospitality of Professor B. Ilschner at the École Polytechnique Fédérale de Lausanne, Switzerland during the last part of the preparation of the book.

Marc André Meyers
La Jolla, California

Krishan Kumar Chawla
Birmingham, Alabama
Preface to the Second Edition

The second edition of *Mechanical Behavior of Materials* has revised and updated material in every chapter to reflect the changes occurring in the field. In view of the increasing importance of bioengineering, a special emphasis is given to the mechanical behavior of biological materials and biomaterials throughout this second edition. A new chapter on environmental effects has been added. Professors Fine and Voorhees\(^1\) make a cogent case for integrating biological materials into materials science and engineering curricula. This trend is already in progress at many US and European universities. Our second edition takes due recognition of this important trend. We have resisted the temptation to make a separate chapter on biological and biomaterials. Instead, we treat these materials together with traditional materials, viz., metals, ceramics, polymers, etc. In addition, taking due cognizance of the importance of electronic materials, we have emphasized the distinctive features of these materials from a mechanical behavior point of view.

The underlying theme in the second edition is the same as in the first edition. The text connects the fundamental mechanisms to the wide range of mechanical properties of different materials under a variety of environments. This book is unique in that it presents, in a unified manner, important principles involved in the mechanical behavior of different materials: metals, polymers, ceramics, composites, electronic materials, and biomaterials. The unifying thread running throughout is that the nano/microstructure of a material controls its mechanical behavior. A wealth of micrographs and line diagrams are provided to clarify the concepts. Solved examples and chapter-end exercise problems are provided throughout the text.

This text is designed for use in mechanical engineering and materials science and engineering courses by upper division and graduate students. It is also a useful reference tool for the practicing engineers involved with mechanical behavior of materials. The book does not presuppose any extensive knowledge of materials and is mathematically simple. Indeed, Chapter 1 provides the background necessary. We invite the reader to consult this chapter off and on because it contains very general material.

In addition to the major changes discussed above, the mechanical behavior of cellular and electronic materials was incorporated. Major reorganization of material has been made in the following parts: elasticity; Mohr circle treatment; elastic constants of fiber reinforced composites; elastic properties of biological and of biomaterials; failure criteria of composite materials; nanoindentation technique and its use in extracting material properties; etc. New solved and

chapter-end exercises are added. New micrographs and line diagrams are provided to clarify the concepts.

We are grateful to many faculty members who adopted the first edition for classroom use and were kind enough to provide us with very useful feedback. We also appreciate the feedback we received from a number of students. MAM would like to thank Kanika Chawla and Jennifer Ko for help in the biomaterials area. The help provided by Marc H. Meyers and M. Cristina Meyers in teaching him the rudiments of biology has been invaluable. KKC would like to thank K. B. Carlisle, N. Chawla, A. Goel, M. Koopman, R. Kulkarni, and B. R. Patterson for their help. KKC acknowledges the hospitality of Dr. P. D. Portella at Federal Institute for Materials Research and Testing (BAM), Berlin, Germany, where he spent a part of his sabbatical. As always, he is grateful to his family members, Anita, Kanika, Nikhil, and Nivi for their patience and understanding.

Marc André Meyers
University of California, San Diego

Krishan Kumar Chawla
University of Alabama at Birmingham
A Note to the Reader

Our goal in writing *Mechanical Behavior of Materials* has been to produce a book that will be the pre-eminent source of fundamental knowledge about the subject. We expect this to be a guide to the student beyond his or her college years. There is, of course, a lot more material than can be covered in a normal semester-long course. We make no apologies for that in addition to being a classroom text, we want this volume to act as a useful reference work on the subject for the practicing scientist, researcher, and engineer.

Specifically, we have an introductory chapter dwelling on the themes of the book: structure, mechanical properties, and performance. This section introduces some key terms and concepts that are covered in detail in later chapters. We advise the reader to use this chapter as a handy reference tool, and consult it as and when required. We strongly suggest that the instructor use this first chapter as a self-study resource. Of course, individual sections, examples, and exercises can be added to the subsequent material as and when desired.

Enjoy!