IMAGE REGISTRATION FOR REMOTE SENSING

Image registration employs digital image processing in order to bring two or more digital images into precise alignment for analysis and comparison. Accurate registration algorithms are essential in supporting Earth and planetary scientists as they mosaic remote sensing satellite images and track changes of the planet's surface over time for environmental, political and basic science studies. The book brings together invited contributions by 36 distinguished researchers in the field to present a coherent and detailed overview of current research and practice in the application of image registration to satellite imagery. The chapters cover the problem definition, theoretical issues in accuracy and efficiency, fundamental algorithms used in its solution, and real-world case studies of image registration software applied to imagery from operational satellite systems.

This book is an essential reference for Earth and space scientists who need a comprehensive and practical overview on how to obtain optimal georegistration of their data, an indispensable source for image processing researchers interested in current research, and the ideal text for teaching a special topic university graduate course.

Jacqueline Le Moigne is the Assistant Chief for Technology in the Software Engineering Division at NASA Goddard Space Flight Center where she leads the strategic vision and the development of goals and objectives for advanced software and information system technologies. During her 20 years experience at NASA, Dr. Le Moigne has performed significant work in the processing and the analysis of remote sensing data. She has become an international expert in image registration, especially as it relates to the use of wavelet analysis, high-performance and onboard processing. She has published over 120 refereed papers and has been an Associate Editor for the IEEE Transactions on Geoscience and Remote Sensing and for the journal Pattern Recognition.

Nathan S. Netanyahu is an Associate Professor in the Department of Computer Science at Bar-Ilan University, Israel, and is also affiliated with the Brain Research Center at Bar-Ilan University and the Center for Automation Research at the University of Maryland, College Park. He has previously worked for the Israeli Ministry of Defense, the Space Data and Computing Division, NASA Goddard Space Flight Center, and for the Center for Excellence in Space Data and Information Sciences (CESDIS) at NASA Goddard. Professor Netanyahu's main research interests are in the areas of algorithm design and analysis, computational geometry, image processing, pattern recognition, remote sensing, and robust statistical estimation. He has coauthored nearly 70 refereed papers that appeared in journals, international conference proceedings, and book chapters, and has served as Associate Editor for Pattern Recognition.

Roger D. Eastman is an Associate Professor of Computer Science at Loyola University Maryland, with over 25 years of experience in image matching and registration for medical, robotic and Earth science applications. Professor Eastman has collaborated with NASA-Goddard researchers in Earth science registration on techniques for generalizing and evaluating algorithms, and for robust subpixel registration, and with NIST-Gaithersburg researchers on advanced sensors for manufacturing robotics for general assembly. He regularly reviews articles on image registration for the IEEE Transactions on Geoscience and Remote Sensing and other remote sensing venues.
IMAGE REGISTRATION FOR REMOTE SENSING

Edited by

JACQUELINE LE MOIGNE
NASA Goddard Space Flight Center, USA

NATHAN S. NETANYAHU
Bar-Ilan University, Israel, and University of Maryland, USA

ROGER D. EASTMAN
Loyola University Maryland, USA
To my mother, Noëlie Le Moigne, for teaching me that all dreams can be achieved through determination. To Gavin, Lauriane and Gordon, for all the hours I spent on this endeavor.

Jacqueline Le Moigne

To my precious children, Aviv and Yovel, and to my beloved partner and closest friend, Ella Aviram, for their love, support, and endless patience!

Nathan S. Netanyahu

To my wife Michele and son Daniel for their support and understanding.

Roger D. Eastman
We dedicate this book to the memory of Professor Azriel Rosenfeld, who inspired us with a love of image processing.
Contents

List of contributors \hspace{2cm} page ix
Foreword by Jón A. Benediktsson \hspace{2cm} xii
Acknowledgements \hspace{2cm} xiv

PART I The Importance of Image Registration for Remote Sensing
1 Introduction \hspace{2cm} 3
Jacqueline Le Moigne, Nathan S. Netanyahu, and Roger D. Eastman
2 Influence of image registration on validation efforts \hspace{2cm} 24
Bin Tan and Curtis E. Woodcock
3 Survey of image registration methods \hspace{2cm} 35
Roger D. Eastman, Nathan S. Netanyahu, and Jacqueline Le Moigne

PART II Similarity Metrics for Image Registration
4 Fast correlation and phase correlation \hspace{2cm} 79
Harold S. Stone
5 Matched filtering techniques \hspace{2cm} 112
Qin-Sheng Chen
6 Image registration using mutual information \hspace{2cm} 131
Arlene A. Cole-Rhodes and Pramod K. Varshney

PART III Feature Matching and Strategies for Image Registration
7 Registration of multiview images \hspace{2cm} 153
A. Ardeshir Goshtasby
8 New approaches to robust, point-based image registration \hspace{2cm} 179
David M. Mount, Nathan S. Netanyahu, and San Ratnasamy
9 Condition theory for image registration and post-registration error estimation \hspace{2cm} 200
C. S. Kenney, B. S. Manjunath, M. Zuliani, and K. Solanki
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Feature-based image to image registration</td>
</tr>
<tr>
<td></td>
<td>\textit{Venu Madhav Govindu and Rama Chellappa}</td>
</tr>
<tr>
<td>11</td>
<td>On the use of wavelets for image registration</td>
</tr>
<tr>
<td></td>
<td>\textit{Jacqueline Le Moigne, Ilya Zavorin, and Harold Stone}</td>
</tr>
<tr>
<td>12</td>
<td>Gradient descent approaches to image registration</td>
</tr>
<tr>
<td></td>
<td>\textit{Arlene A. Cole-Rhodes and Roger D. Eastman}</td>
</tr>
<tr>
<td>13</td>
<td>Bounding the performance of image registration</td>
</tr>
<tr>
<td></td>
<td>\textit{Min Xu and Pramod K. Varshney}</td>
</tr>
</tbody>
</table>

PART IV Applications and Operational Systems

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Multitemporal and multisensor image registration</td>
</tr>
<tr>
<td></td>
<td>\textit{Jacqueline Le Moigne, Arlene A. Cole-Rhodes, Roger D. Eastman,}</td>
</tr>
<tr>
<td></td>
<td>Nathan S. Netanyahu, Harold S. Stone, Ilya Zavorin, and Jeffrey T. Morisette</td>
</tr>
<tr>
<td>15</td>
<td>Georegistration of meteorological images</td>
</tr>
<tr>
<td></td>
<td>\textit{James L. Carr}</td>
</tr>
<tr>
<td>16</td>
<td>Challenges, solutions, and applications of accurate multiangle image registration: Lessons learned from MISR</td>
</tr>
<tr>
<td></td>
<td>\textit{Veljko M. Jovanovic, David J. Diner, and Roger Davies}</td>
</tr>
<tr>
<td>17</td>
<td>Automated AVHRR image navigation</td>
</tr>
<tr>
<td></td>
<td>\textit{William J. Emery, R. Ian Crocker, and Daniel G. Baldwin}</td>
</tr>
<tr>
<td>18</td>
<td>Landsat image geocorrection and registration</td>
</tr>
<tr>
<td></td>
<td>\textit{James C. Storey}</td>
</tr>
<tr>
<td>19</td>
<td>Automatic and precise orthorectification of SPOT images</td>
</tr>
<tr>
<td></td>
<td>\textit{Simon Baillarin, Aurélie Bouillon, and Marc Bernard}</td>
</tr>
<tr>
<td>20</td>
<td>Geometry of the \textit{VEGETATION} sensor</td>
</tr>
<tr>
<td></td>
<td>\textit{Sylvia Sylvander}</td>
</tr>
<tr>
<td>21</td>
<td>Accurate MODIS global geolocation through automated ground control image matching</td>
</tr>
<tr>
<td></td>
<td>\textit{Robert E. Wolfe and Masahiro Nishihama}</td>
</tr>
<tr>
<td>22</td>
<td>SeaWiFS operational geolocation assessment system</td>
</tr>
<tr>
<td></td>
<td>\textit{Frederick S. Patt}</td>
</tr>
</tbody>
</table>

PART V Conclusion

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Concluding remarks</td>
</tr>
<tr>
<td></td>
<td>\textit{Jacqueline Le Moigne, Nathan S. Netanyahu, and Roger D. Eastman}</td>
</tr>
</tbody>
</table>

Index

Color plate section between pages 338 and 339.
Contributors

SIMON BAILLARIN, CNES (Centre National d’Etudes Spatiales), Toulouse, France

DANIEL G. BALDWIN, Colorado Center for Astrodynamics Research, Aerospace Engineering Science Department, University of Colorado at Boulder, Colorado

JÓN A. BENEDIKTSSON, IEEE Geoscience and Remote Sensing Society and University of Iceland, Reykjavik, Iceland

MARC BERNARD, Spot Image, Toulouse, France

AURÉLIE BOUILLON, IGN (Institut Géographique National), Saint-Mandé, France

JAMES L. CARR, Carr Astronautics, Washington, DC

RAMA CHELLAPPA, Center for Automation Research, University of Maryland at College Park, Maryland

QIN-SHENG CHEN, Hickman Cancer Center, Flower Hospital, ProMedica Health System, Sylvania, Ohio

ARLENE COLE-RHODES, Electrical and Computer Engineering Department, Morgan State University, Baltimore, Maryland

R. IAN CROCKER, Colorado Center for Astrodynamics Research, Aerospace Engineering Science Department, University of Colorado at Boulder, Colorado

ROGER DAVIES, Department of Physics, The University of Auckland, New Zealand

DAVID J. DINNER, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
List of contributors

ROGER D. EASTMAN, Loyola University, Baltimore, Maryland

WILLIAM J. EMERY, Colorado Center for Astrodynamics Research, Aerospace Engineering Science Department, University of Colorado at Boulder, Colorado

A. ARDESHIR GOSHTASBY, Department of Computer Science and Engineering, Wright State University, Dayton, Ohio

VENU M. GOVINDU, Department of Electrical Engineering, Indian Institute of Science, Bangalore, India

VELJKO M. JOVANOVIC, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

CHARLES S. KENNEY, Department of Electrical and Computer Engineering, University of California at Santa Barbara, California

JACQUELINE LE MOIGNE, NASA Goddard Space Flight Center, Greenbelt, Maryland

B. S. MANJUNATH, Department of Electrical and Computer Engineering, University of California at Santa Barbara, California

JEFFREY MORISSETTE, U.S. Geological Survey (USGS) Fort Collins Center, Colorado; formerly Hydropheric and Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

DAVID M. MOUNT, Department of Computer Science, University of Maryland at College Park, Maryland

NATHAN S. NETANYAHU, Bar-Ilan University, Israel, and University of Maryland at College Park, Maryland

MASAHIRO NISHIHAMA, Raytheon at Terrestrial Information Systems Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland

FREDERICK S. PATT, Science Applications International Corporation (SAIC), NASA Goddard Space Flight Center, Greenbelt, Maryland

SAN RATANASANYA, formerly Department of Computer Science, University of Maryland at College Park, Maryland

KAUSHAL SOLANKI, Department of Electrical and Computer Engineering, University of California at Santa Barbara, California

HAROLD S. STONE, NEC Research Laboratory Retiree, New Jersey
List of contributors

James Storey, SGT (Stinger Ghaffarian Technologies) at USGS Center for Earth Resources Observation and Science (EROS), Sioux Falls, South Dakota

Sylvia Sylvander, CNES (Centre National d’Etudes Spatiales), Toulouse, France

Bin Tan, Earth Resources Technology Inc., Annapolis Junction, Maryland

Pramod K. Varshney, Electrical Engineering and Computer Science Department, Syracuse University, New York

Robert E. Wolfe, Terrestrial Information Systems Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland

Curtis Woodcock, Department of Geography and Environment, Boston University, Massachusetts

Min Xu, Department of Electrical Engineering and Computer Science, Syracuse University, New York

Ilya Zavorin, formerly Goddard Earth Science Technology (GEST) Center at NASA Goddard, University of Maryland Baltimore County, Maryland

Marco Zuliani, Department of Electrical and Computer Engineering, University of California at Santa Barbara, California
Foreword

In recent years, image registration has become extremely important in remote sensing applications. Image registration refers to the fundamental task in image processing to match two or more pictures which have been taken of the same object or scene, for example, at different times, from different sensors, or from different viewpoints.

The main reason for the increased significance of image registration in remote sensing is that remote sensing is currently moving towards operational use in many important applications, both at social and scientific levels. These applications include, for example, the management of natural disasters, assessment of climate changes, management of natural resources, and the preservation of the environment; all of which involve the monitoring of the Earth’s surface over time. Furthermore, there is an increasing availability of images with different characteristics, thanks to shorter revisiting times of satellites, increased flexibility of use (different acquisition modalities) and the evolution of sensor technologies. Therefore, a growing need emerges to simultaneously process different data, that is, remote sensing images, for information extraction and data fusion. This includes the comparison (integration or fusion) of newly acquired images with previous images taken with different sensors or with different acquisition modalities or geometric configurations – or with cartographic data. The remote images can, therefore, be multitemporal (taken at different dates), multisource (derived from multiple sensors), multimode (obtained with different acquisition modalities), or stereo-images (taken from different viewpoints).

The different images are initially in different coordinate systems. The registration process spatially aligns them by considering one of the images as a reference and transforming the remaining images one at a time. Therefore, a selection of corresponding structures/elements (e.g., pairs of good control points, linear features, etc.) in the reference and in each of the other images is necessary to determine an appropriate transformation. After the completion of the registration process, the
images can be processed for information extraction. The registration procedure can both be manual and automatic. A wide variety of situations requires diverse registration techniques, spanning from quite simple to very complex and flexible ones, depending also on the degree of heterogeneity of the images and on the level of accuracy needed by the user or by the next computerized analysis stages to which the registration results are addressed. A number of approaches can be put under the umbrella of image registration. Geolocation and geometric correction are examples of such techniques.

Although a few books have been written on image registration in general and several for specific application fields, like medical imaging, in particular, no book has until now been available on image registration research in remote sensing. Therefore, this book edited by Dr. Jacqueline Le Moigne, Professor Nathan S. Netanyahu, and Professor Roger D. Eastman, is very welcome and is of great importance to researchers in remote sensing. The editors are renowned experts in the field of image registration of remote sensing data, and they have selected a group of outstanding authors to cover the most important topics in image registration for remote sensing.

The book is very well organized and split into four main parts. The first part gives an overview of image registration in remote sensing and discusses its importance. The next two parts discuss specific topics in the image registration chain, i.e., similarity metrics and feature matching. Finally, examples on several important applications and systems are given in part four. The book has the significant advantage that it is written in such a way that it is suitable not only for those who are advanced in processing of remote sensing data but also for those who are new to the field, including students. Newcomers to the field will get a clear understanding of what image registration for remote sensing is about after studying a few chapters in the book.

Professor Jón Atli Benediktsson
President
IEEE Geoscience and Remote Sensing Society
Pro-Rector of Academic Affairs
University of Iceland
The editors would like to acknowledge Dr. Harold Stone, Dr. Ilya Zavorin, and Professor Arlene Cole-Rhodes for their long-standing research collaboration and their help in preparing this book. They would also like to acknowledge Professor Arthur Goshtasby for his forthcoming advice on the notation used in the book and Dr. Jeffrey Morisette for his thoughtful insights on many Earth science issues. The editors are grateful to Professor Jón Benediktsson for writing the Foreword and Professor Sebastiano Serpico for his book endorsement. Finally, the editors are deeply indebted to all the contributors to this volume for their expertise, dedicated work, and patience.