NOISE-INDUCED PHENOMENA IN THE ENVIRONMENTAL SCIENCES

Randomness is ubiquitous in nature. Random drivers are generally considered a source of disorder in environmental systems. However, the interaction between noise and nonlinear dynamics may lead to the emergence of a number of ordered behaviors (in time and space) that would not exist in the absence of noise. This counterintuitive effect of randomness may play a crucial role in environmental processes. For example, seemingly “random” background events in the atmosphere can grow into larger instabilities that have great effects on weather patterns. This book presents the basics of the theory of stochastic calculus and its application to the study of noise-induced phenomena in environmental systems. It will be an invaluable reference text for ecologists, geoscientists, and environmental engineers interested in the study of stochastic environmental dynamics.

Luca Ridolfi is Professor in the Department of Water Engineering at the Polytechnic of Turin. His research focuses on ecohydrology, fluvial morphodynamics, biogeography, river water quality, and hydrodynamic instabilities.

Paolo D’Odorico is Professor in the Department of Environmental Sciences at the University of Virginia. His research focuses on ecohydrology, soil-moisture dynamics, global environmental change, nonlinear ecosystem dynamics, and desertification.

Francesco Laio is Associate Professor in the Department of Water Engineering at the Polytechnic of Turin. His research focuses on ecohydrology, stochastic hydrology, surface-water hydrology, and extreme value statistics.
NOISE-INDUCED PHENOMENA IN THE ENVIRONMENTAL SCIENCES

LUCA RIDOLFI
Politecnico di Torino

PAOLO D’ODORICO
University of Virginia

FRANCESCO LAIO
Politecnico di Torino
Contents

Preface

1 Introduction
1.1 Noise-induced phenomena 1
1.2 Time scales and noise models 3

2 Noise-driven dynamical systems
2.1 Introduction 7
2.2 Dichotomous noise 7
2.2.1 Definition and properties 7
2.2.2 Dichotomous noise in the environmental sciences 11
2.2.3 Stochastic processes driven by dichotomous noise 14
2.3 White shot noise 28
2.3.1 Definition and properties 28
2.3.2 White shot noise as a limiting case of the DMN 30
2.3.3 Relevance of white shot noise in the biogeosciences 30
2.3.4 Stochastic process driven by white shot noise 31
2.4 White Gaussian noise 38
2.4.1 Definition and properties 38
2.4.2 White Gaussian noise as a limiting case of DMN and WSN 40
2.4.3 Relevance of Gaussian noise in the biogeosciences 40
2.4.4 Stochastic process driven by Gaussian noise 41
2.5 Colored Gaussian noise 44
2.5.1 Solution for linear Langevin equations 45
2.5.2 Dynamics driven by the Ornstein–Uhlenbeck process 46

3 Noise-induced phenomena in zero-dimensional systems 51
3.1 Introduction 51
3.2 Noise-induced transitions 51
3.2.1 Noise-induced transitions driven by dichotomous Markov noise 52
3.2.2 Noise-induced transitions for processes driven by shot noise 71
Contents

3.2.3 Noise-induced transitions for processes driven by Gaussian white noise 72
3.2.4 Noise-induced transitions for processes driven by Gaussian colored noise 76
3.3 Stochastic resonance 79
3.3.1 Basic concepts about stochastic resonance 79
3.3.2 Other forms of stochastic resonance 86
3.4 Coherence resonance 89
3.5 Noise-induced net transport 91

4 Noise-induced phenomena in environmental systems 98
4.1 Introduction 98
4.2 Dichotomous Markov noise in ecosystem dynamics 99
4.2.1 Noise-induced transitions due to random alternations between stressed and unstressed conditions in ecosystems 99
4.2.2 Noise-induced stability in dryland ecosystems 104
4.2.3 Noise-induced biodiversity 109
4.2.4 State-dependent dichotomous Markov noise in environmental systems 116
4.3 Environmental systems forced by white shot noise 117
4.3.1 Harvest process: Fire-induced tree–grass coexistence in savannas 118
4.3.2 Poisson harvest process with state-dependent harvest rate 121
4.3.3 Stochastic soil-mass balance 123
4.3.4 Stochastic soil-moisture dynamics 128
4.4 Environmental systems forced by Gaussian white noise 134
4.4.1 Harvest process driven by Gaussian white noise 134
4.4.2 Stochastic genetic model 135
4.4.3 Noise-induced extinction 138
4.4.4 Noise-induced bistability in climate dynamics: Effect of land–atmosphere interactions 142
4.5 Environmental systems forced by colored Gaussian noise 144
4.6 Environmental systems forced by other types of noise 146
4.7 Noise-induced phenomena in multivariate systems 147
4.7.1 Stochastic dynamics of two competing species 148
4.7.2 Phase transitions in multivariate systems driven by dichotomous noise 150
4.7.3 Stability of multivariate ecological systems with random interspecies interactions 154
4.8 Stochastic resonance and coherence in environmental processes 156
4.8.1 The Benzi–Parisi–Sutera–Vulpiani climate-change model 156
4.8.2 Fluctuations in the glacial climate: An effect of stochastic or coherence resonance? 159
Contents

4.8.3 A coherence-resonance mechanism of biodiversity 161
4.8.4 Coherence resonance in excitable predator–prey systems 163

5 Noise-induced pattern formation 167
5.1 Introduction 167
 5.1.1 General aspects 167
 5.1.2 Overview of stochastic mechanisms 171
 5.1.3 Other noise-induced phenomena in spatiotemporal systems 182
 5.1.4 Chapter organization 185
5.2 Additive noise and pattern-forming spatial couplings 186
 5.2.1 Analysis of the deterministic dynamics 186
 5.2.2 The role of the additive noise 189
5.3 Additive noise and non-pattern-forming spatial couplings 193
5.4 Multiplicative noise and pattern-forming spatial couplings 195
 5.4.1 Prototype model 197
 5.4.2 The effect of nonlinear \(g(\phi) \) terms 203
 5.4.3 Case with \(g(\phi_0) \neq 0 \): The van den Broeck–Parrondo–Toral model 205
5.5 Multiplicative noise and non-pattern-forming spatial couplings 210
 5.5.1 The VPT model with diffusive spatial coupling 214
5.6 The role of the temporal autocorrelation of noise 216
5.7 Patterns accompanied by temporal phase transitions 219
 5.7.1 Prototype model 220
 5.7.2 Prototype model with non-pattern-forming coupling 224
 5.7.3 A case with \(g(\phi_0) = 0 \) 224
 5.7.4 A particular subclass of processes 227
5.8 Patterns induced by periodic or random switching between deterministic dynamics 229
5.9 Spatiotemporal stochastic resonance 232
5.10 Spatiotemporal stochastic coherence 236

6 Noise-induced patterns in environmental systems 240
6.1 Introduction 240
6.2 Models of spatial interactions 243
6.3 Examples of pattern-forming processes 244
6.4 Patterns induced by additive noise 248
6.5 Patterns induced by multiplicative white shot noise 252
6.6 Random switching between two deterministic dynamics 256
 6.6.1 Swift–Hohenberg process driven by dichotomous noise 256
 6.6.2 Random switching between stressed and unstressed conditions in vegetation 259
6.7 Spatiotemporal stochastic resonance in predator–prey systems 265
6.8 Spatiotemporal coherence resonance in excitable plankton systems 266

Appendix A: Power spectrum and correlation 269
Appendix B: Deterministic mechanisms of pattern formation

B.1 Introduction 274

B.2 Turing-like instability 275
 B.2.1 An example of a Turing model 278

B.3 Kernel-based models of spatial interactions 280
 B.3.1 Biharmonic approximation of neural models 284

B.4 Patterns emerging from differential-flow instability 284
 B.4.1 Case study: A differential-flow ecological model of pattern formation 286

Appendix C: List of symbols and acronyms

C.1 Greek symbols 289
C.2 Latin symbols 290
C.3 Mathematical symbols 291
C.4 Acronyms 291

Bibliography

293

Index

311
Noise-induced phenomena are characterized by the ability of noise to induce order (either in space or in time) in dynamical systems. These phenomena are caused by the randomness of external drivers, and they would not exist in the absence of noise. The ability of noise to create order is counterintuitive. In fact, until recently, noise was generally associated with disordered random fluctuations around the steady states of the underlying deterministic dynamics. However, in the past few years the scientific community has become aware that noise can also have a more fundamental effect, in that it can determine new states and new dynamical patterns.

The speculative “beauty” of these dynamical behaviors, as well as the ubiquitous occurrence of random drivers in a number of natural and engineered systems, explains the great attention that has been recently paid to the study of noise-induced phenomena. A number of recent contributions have shown that the emergence of order and patterns in nature may result as an effect of the noise inherent in environmental variability. A typical example is climate fluctuations and their ability to induce dynamical behaviors that would not exist in the absence of random climate variability.

The main reason for writing this book is that there is a rich body of literature on noise-induced phenomena in the environmental sciences, and it has become difficult to keep track of the main theories, methods, and findings that have been presented in a number of research articles spread throughout the physics, mathematics, geoscience, and ecology journals. After working for a few years in this research field, we have become aware of the need for a book that (1) describes the main mechanisms of noise-induced order in space and in time; (2) presents rigorous mathematical tools addressing a relatively broad readership of environmental scientists, who are not necessarily familiar with the theory of stochastic processes; (3) focuses on applications to the environmental sciences; and (4) reviews a number of recent studies on noise-induced phenomena in environmental dynamics.

The goal of this book is to provide a synthesis of theories and methods for the study of noise-induced phenomena in the environment and to draw the attention of the
earth and environmental science communities toward this fascinating and challenging research area. Through a number of examples of noise-induced phenomena we stress how in the natural environment random fluctuations are the rule and interesting behaviors may emerge from the interactions between the deterministic and stochastic components of environmental dynamics.

This book is not intended to be a comprehensive treatise on noise-induced phenomena. This relatively vast and fast-moving research field is enriched every day with new studies appearing in the literature. It would not be possible to contain in this volume an exhaustive review of all the existing theories of noise-induced order and their application to the environmental sciences. This book tries to provide an organized synthesis of the main contributions to this subject, drawing from material that is currently spread through a number of journals and other publications.

The completion of this book would have not been possible without the help, motivation, and support of a few collaborators and colleagues. We thank Stefania Scarsoglio and Fabio Borgogno (Politecnico di Torino) for providing invaluable help in performing the numerical simulations and contributing to the analysis of the results on noise-induced pattern formation (Chapters 5 and 6). We are grateful to Ignacio Rodriguez-Iturbe (Princeton University), Amilcare Porporato (Duke University), and Andrea Rinaldo (École Polytechnique Federale de Lausanne) for their unfailing encouragement and support through years of continued collaboration and companionship. We also acknowledge René Lefever (Université Libre de Bruxelles), whose work has inspired our research on noise-induced phenomena. We are also indebted to our institutions, the Polytechnic of Turin (Dipartimento di Idraulica, Trasporti e Infrastrutture Civili) and the University of Virginia (Department of Environmental Sciences) for providing high-quality academic environments that constantly stimulate our work.

Luca Ridolfi Paolo D’Odorico Francesco Laio